Anisotropy in the visual cortex investigated by neuronavigated transcranial magnetic stimulation.

نویسندگان

  • Thomas Kammer
  • Michael Vorwerg
  • Bärbel Herrnberger
چکیده

Responses to transcranial magnetic stimulation (TMS) of the motor cortex depend on the direction of the induced current with an optimum perpendicular to the orientation of the precentral gyrus. Little is known about anisotropy in other cortical regions. We measured phosphene thresholds in the visual cortex using a frameless neuronavigation system. Comparing horizontal and vertical current orientation as well as monophasic and biphasic pulses in 7 subjects, we found lower thresholds with biphasic pulses and a tendency for lower thresholds with horizontal currents. When varying current directions in steps of 45 degrees centered on a hot spot over the occipital cortex, in 10 out of 12 measurements optimal current orientation ran perpendicular to the underlying gyrus (mean deviation 14.6 degrees). Optimal current orientation was determined as the orientation of the second eigenvector from the covariance matrix of the stimulation sites that had been shifted along the respective current direction by the amount of the measured threshold. Individual cortical architecture was obtained by segmentation of a 3d anatomical MR scan, with large interindividual differences among the orientations of the stimulated gyrus. As with the motor system, the optimum threshold with biphasic pulses was flipped about 180 degrees compared to the optimum with monophasic pulses (p<.02) throughout subjects, suggesting both similar anisotropic properties of networks in the visual and motor cortices and the existence of anisotropic behaviour in any cortical region. As a consequence, optimal TMS application should always take into account the individual orientation of the gyrus to be stimulated.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Safety and Therapeutic Effects of Repetitive Transcranial Magnetic Stimulation and Behavior Therapy in a Pregnant Woman: Case Report

In this study, the authors reported a case of woman with severe compulsion who became pregnant during the Repetitive transcranial magnetic stimulation. We carried out Repetitive transcranial magnetic stimulation and behavior therapy simultaneously after repeated medications' refraction. The patient received 20 sessions 1 Hz Repetitive transcranial magnetic stimulation in right dorsolateral pref...

متن کامل

Prediction of the response to repetitive transcranial magnetic stimulation by spectral powers of prefrontal regions of brain.

Introduction: Quantitative assessments of the effects induced by repetitive transcranial magnetic stimulation (rTMS) are crucial to develop more efficient and personalized treatments. Objectives: To determine the spectral powers of different subbands of EEG correlated with treatment response to rTMS.   Materials and Methods: the spectral powers of different...

متن کامل

Does the Longer Application of Anodal-Transcranial Direct Current Stimulation Increase Corticomotor Excitability Further? A Pilot Study

 Introduction: Anodal transcranial direct current stimulation (a-tDCS) of the primary motor cortex (M1) has been shown to be effective in increasing corticomotor excitability.  Methods: We investigated whether longer applications of a-tDCS coincide with greater increases in corticomotor excitability compared to shorter application of a-tDCS. Ten right-handed healthy participants received one se...

متن کامل

P45: Long-Lasting Effects of Repetitive Transcranial Magnetic Stimulation on Anxiety-Like Behaviors in Schizophrenic Developmental Model

Transcranial magnetic stimulation (TMS) has been applied to a growing number of psychiatric disorders as a neurophysiological probe, a primary brain-mapping tool and a candidate treatment. Although most investigations have focused on the treatment of major depression, increasing attention has been paid to anxiety disorders. The aim of this study is to long time (for 30 days) effect of repetitiv...

متن کامل

Neuronavigated transcranial magnetic stimulation suggests that area V2 is necessary for visual awareness.

The primary visual cortex (V1) has been shown to be critical for visual awareness, but the importance of other low-level visual areas has remained unclear. To clarify the role of human cortical area V2 in visual awareness, we applied transcranial magnetic stimulation (TMS) over V2 while participants were carrying out a visual discrimination task and rating their subjective awareness. Individual...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • NeuroImage

دوره 36 2  شماره 

صفحات  -

تاریخ انتشار 2007